I'm going to be doing the length of a shoe vs. the heel height.
I think it will be nonlinear, and not a very strong association.


Here’s a link to my data. __https://docs.google.com/a/oxbowhs.org/spreadsheets/d/1RZdSKghFd78h_HbREbvfYrhmBNPNrNrfE22HirWb9wo/edit?usp=sharing__



external image WMej0jn42Ok0eVd-yGuyj2DTgUNYfWTZJuNxt3ooqjM94sbRHI4_hJ8e3T0v1-MmqfNqUZDPoPdaLeVFxg6XkJd3lc7niN4V_so3qoWFCohh3VUiHYKUuE46djLjPLeQ1mDgXZ7_

external image tZAn76io_76QP1rsvdUGVbu1BBEL1X3cNYUtzlCqsiWtJvhGggDet-5rCHyN3xVbewgxWpO9EXP_ylJNXJz6A1xfOvgcclErZV9JuIWm-S9t-8l3nZbl9j5JCA5wLMYXGMzI56Ka

Regression equation: = 7.9298406 + 0.1053255X

external image _kJNFD3BfROSAsYuUo3e2p2fb3LOIdo1MGVpwCKizcpL6u39A1r3oB-tcYx3iuZQ7DX9Sgce-7KeF-uW8kVi9j-ZrnPz2-c74OVT-kWD-bfbxoIvv_MGrvebL7ePJ_niRwo0ABZh

Here’s a graph of the residuals vs. the x values.

external image Em6H0SmqLpauLefzI93Z5hSqf1Q-j7JqXMcTid3jQDZx6wVltIwXw7_6VyIhyUMGIWAVZxVKBq4aeWusxnomSIKu9Zjg99jxfwsuWwD0VAO_vL7Dw8WQXN6Kau8jKJkPFSlY9AO9

The data shows that there is a slightly positive association between the length of a shoe and the height of its heel. Had I done all the same types of shoes, (sneakers, flats, boots, etc) maybe it would have been stronger however given that I used all types the association is about what I expected it to be. There are many outliers which I believe are shoes that belong to other Danielle’s Dad vs the rest of her family, and boots that had a higher heel height than the rest.

I am seeing a slight pattern within my data so I am going to try and straighten it.

external image A8Ph0W4o5GErqk_oe9o9V-IB8R69CQwQSRe6BAlPlnGeF3gKEpZZt6gNyExR83jvM2l8Dqx5PjnxvFpdeBpSGfWSWE-WJkLvm49FGd7CxL_IUr1YwmvK2DXsz9bYLiNt8KVDaZDnexternal image 0Af9UDnfAiFgn64E8NshxOj1HFkE8IXQCxKcnNV1NYEttVnOzRi1ZchDrK3Km3yD5ZsXHmJeg2w-OjvMRtuL9PiiCi7VEyp3HBLjICIwBBZVFPRsDB__IQXJX-TyGufuA0cdL7LSOnce I made all my graphs I noticed that there is association between shoe length and heel height so it’s not possible to completely straighten the data. I chose the graph with the lowest residual on the y axis.
external image avMnNcXOL4UUqIAFNJPn7ANK3GIyGOD4NG0QpNGpH6W6Sl7Zw__6n9iMcrYTMVWuigi2GkmYCfsTqb79KJH2f09FyhUEK8581CzK9HdGvsxfgBS0NmipIiEja7YEp93xf3xMy4od

external image hTvKWu8Jc_Wx3gPtb_qh5yhsJkaO9eoeN0RgL9cN4vk74UDl27braogssBp9gLKPIRNLoi2F_9rmQiqc82581e9mKbsh7LlZaDNyr8C6ALz2pbrmPKtX0inehk-tF_s92j75AT5oexternal image guIWzqJqcq3SND1NEPiNw9ca8UeFGNI6CiCm-XSIPobuhHtqVPIWYijGWE9R_uTWAOxq2nDa_n-H2YbYRn40BmpltwitbUm8eK48woljbIx0TuY_l2sk4XpgVo0jKfW5_L0iudl8
external image drQhWh6W2rWHheMIsWMZwreetBP7Bde7Vd12faJjX6Iu-Th-f7sLkyIle_qQiUs0n_sarQugDiwV1EMzumI8xcJiyi4vsnuFGtc0YQiGmwEAoZsfqSMCaM8J9PPr8xYIeRGZO4ee